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Abstract
Decompositions of Lie groups are used in systems and control, both to analyse
dynamics and to design control algorithms for systems with state varying
on a Lie group. In this paper, we investigate the relation between Cartan
decompositions of the unitary group and discrete quantum symmetries. To
every Cartan decomposition, there corresponds a quantum symmetry which
is the identity when applied twice. As an application, we describe a new
and general method to obtain Cartan decompositions of the unitary group of
evolutions of multipartite systems from Cartan decompositions on the single
subsystems. The resulting decomposition, which we call of the odd–even type,
contains, as a special case, the concurrence canonical decomposition (CCD)
presented in [6–8] in the context of entanglement theory. The CCD is therefore
extended from the case of a multipartite system of N qubits to the case where
the component subsystems have arbitrary dimensions. We present an example
of application of the results to control design for quantum systems.

PACS numbers: 03.65.−w, 02.20.Hj, 02.30.Yy, 03.67.Mn

1. Introduction

Decompositions of Lie groups have been extensively used in control theory to analyse the
dynamics and to design control algorithms for bilinear, right invariant, systems with state
varying on Lie groups. Once it is known how to factorize a target final state Xf as the product

Xf = X1X2 · · · Xr, (1)

then the task of controlling to Xf can be reduced to the (simpler) task of controlling to
the factors X1, . . . , Xr . If the focus is the control of quantum systems (as in the present
paper), then the Lie group is the group of unitary matrices of appropriate dimensions,
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U(n). However, different Lie groups are studied for different systems, e.g. the Lie group
of special orthogonal matrices for some classical systems. Previous studies in this direction
for both quantum and classical control systems are given in [1, 9–11, 17, 18]. In quantum
information theory, a factorization of type (1) can be interpreted as the implementation of
a quantum logic operation with a sequence of elementary operations. In this case also,
the relevant Lie group is the Lie group of unitary matrices of dimensions n,U(n). In
general, a decomposition of the unitary evolution operator of the form (1) is useful to
determine several aspects of the dynamics of quantum systems including the degree of
entanglement (see e.g. [20]), time optimality of the evolution [14] as well as constructive
controllability.

Most of the studies presented so far, which involve Lie group decompositions applied
to the quantum systems, are concerned with low-dimensional systems. For these systems,
several complete and elegant results can be obtained, which also have important physical
implications. Decompositions of the unitary group U(n) for large n exist and can be applied
to the dynamical analysis of high-dimensional quantum systems. However, the information
obtained with this study is rarely as useful and of direct physical interpretation as in the
low-dimensional cases. For multipartite systems, this motivates the search for Lie group
decompositions constructed in terms of decompositions on the single subsystems. We shall
construct such type of decomposition in the present paper.

The main motivation for the study presented here was given by the recent papers [6–8]. In
these papers, a decomposition of U(2N) called the concurrence canonical decomposition
(CCD) was obtained for a quantum system of N two level systems (qubits). Such a
decomposition has the above-mentioned feature of being expressed in terms of elementary
decompositions on the single qubit subsystems. It is related to time reversal symmetry,
and this raises the question of what in general the relation is between quantum mechanical
symmetries and decompositions. As we shall see here, the answer to this fundamental question
is instrumental in developing a general method to construct decompositions of multipartite
systems from elementary decompositions of the single subsystems. We shall develop a
decomposition which we call of the ‘odd–even type’ that contains the concurrence canonical
decomposition as a special case.

The paper is organized as follows. In section 2 we review the basic definitions and results
concerning discrete quantum symmetries and Cartan decompositions of the Lie algebra su(n)

and therefore the Lie group SU(n). We shall stress the important result that, up to conjugacies,
there are only three types of Cartan decompositions which are labelled as AI, AII and AIII. In
section 3, we investigate the relation between Cartan decompositions and quantum symmetries
and establish a one-to-one correspondence between Cartan decompositions and a subclass of
symmetries which we call Cartan symmetries. To every Cartan decomposition of the Lie
algebra u(n) and corresponding Cartan symmetry there corresponds a decomposition of the
Jordan algebra of Hermitian matrices of dimension n, iu(n), equipped with the anticommutator
operation. This is described in section 4. This is also the crucial fact used to develop the
general decomposition of the odd–even type for multipartite systems in arbitrary dimensions
in section 5. This decomposition is a Cartan decomposition and, in section 6, we show how
to determine its type (AI or AII). The Cartan decomposition also leads to a decomposition
of the evolution of any quantum system into the product of an evolution with antisymmetric
Hamiltonian and one with symmetric Hamiltonian with respect to a Cartan symmetry. This
general result on the dynamics of quantum systems is discussed in remark 4.1. In section 7,
we summarize the results of the paper and give an example of application to a control
problem.
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2. Background material

2.1. Discrete symmetries in quantum mechanics

Given a quantum system with underlying Hilbert space H, a quantum mechanical symmetry
is defined (see e.g. [12] chapter 7, [16] chapter 4) as a one-to-one and onto map � : H → H
such that physically indistinguishable states are also mapped into physically indistinguishable
states, i.e. for every |ψ〉 ∈ H and φ1 ∈ R,

�(eiφ1 |ψ〉) = eiφ2�(|ψ〉), (2)

for some φ2 ∈ R. In other words, � maps rays of the Hilbert space H into rays of H.
Moreover � preserves the modulus of the inner product of two states, namely if |α̃〉 := �|α〉,
then for any two states, |α〉 and |β〉

|〈α̃|β̃〉| = |〈α|β〉|. (3)

In this definition, we omit for simplicity the consideration of selection rules and assume that
all the states are physically realizable. A detailed discussion of this point can be found in [12].

According to Wigner’s theorem [19], every such operation � can be represented as

� = eiφU, (4)

where φ is a constant, physically irrelevant, real parameter, and U is either a unitary operator
or an antiunitary one. Recall that an antiunitary operator U, |α〉 → |α̃〉 := U |α〉, is defined
as satisfying

〈β̃|α̃〉 = 〈β|α〉∗, (5)

U(c1|α〉 + c2|β〉) = c∗
1U |α〉 + c∗

2U |β〉. (6)

Once a basis of the Hilbert space H is chosen, an antiunitary operator U can always be
written as

U |α〉 = XK|α〉, (7)

where K is the operation which conjugates all the components of the vector |α〉 and X is unitary.
A symmetry �, whether unitary or antiunitary, induces a transformation on the space of

Hermitian operators A as

A → �A�−1 := θ̄ (A). (8)

It is in fact easily verified that the operator θ̄ (A) is again an Hermitian operator on the Hilbert
space H. Moreover the eigenvalues of θ̄ (A) are the same as those of A and a set of orthonormal
eigenvectors are given by �|αj 〉, where |αj 〉 is an orthonormal basis of eigenvectors of A. It
can be proved [12, 16] that, up to a phase factor, θ̄ (A) := �A�−1 is the only choice that
guarantees

|〈α̃|θ̄ (A)|β̃〉 = |〈α|A|β〉|. (9)

Description of the symmetry � is usually done by specifying how θ̄ acts on Hermitian
operators rather than how � acts on states. This is because Hermitian operators represent
physical observables, and therefore the action of θ̄ on observables is typically suggested by
physical considerations. For example, the space translation symmetry has to be such that

θ̄ (x̂) = x̂ − a, (10)

for some constant a where x̂ is the position operator. As another example, the parity or space
inversion symmetry is defined such that

θ̄ (x̂) = −x̂. (11)
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On the other hand, specification of θ̄ on an irreducible set of observables uniquely determines
� up to a phase factor [12]. Recall that an irreducible set of observables {Aj } is defined such
that if an observable B commutes with all of {Aj }, then B is a multiple of the identity.

An observable H is said to satisfy a symmetry � or to be symmetric with respect to � if

θ̄ (H) = H, (12)

or equivalently

�H = H�. (13)

It is said to be antisymmetric with respect to � if

θ̄ (H) = −H ↔ �H = −H�. (14)

A special type of symmetry is the time reversal symmetry. In classical mechanics, a time
reversal symmetry changes a system into one which evolves with time reversal trajectories.
This suggests to define a time reversal symmetry in quantum mechanics so that θ̄ acts on the
position x̂ and the momentum operator p̂ according to

θ̄ (x̂) = x̂, (15)

θ̄ (p̂) = −p̂. (16)

This implies that the corresponding � transforms momentum eigenvectors |p〉 as

�|p〉 = |−p〉. (17)

If the system under consideration has no spin degree of freedom, then x̂ and p̂ form an
irreducible set of observables and therefore (15) and (16) uniquely specify the transformation
� on the state. Moreover, from the definition of angular momentum L̂ := x̂ × p̂, we obtain

θ̄ (L̂) = θ̄ (x̂) × θ̄ (p̂) = −L̂, (18)

since θ̄ as defined in (8) is a morphism, and in particular it preserves the cross product. For a
system with spin angular momentum Ŝ, we impose by definition, according to (18),

θ̄ (Ŝ) = −Ŝ, (19)

and x̂, p̂, Ŝ form an irreducible set of observables. If |m〉 is an eigenvector of the (spin) angular
momentum corresponding to the eigenvalue m, we have

�|m〉 = |−m〉. (20)

From these specifications, it is possible to obtain an explicit expression of the time reversal
symmetry for a system of N particles with spin operators Ŝ1, . . . , ŜN . It is given (in a basis of
tensor products of the eigenstates of the z-component of the spin operators) by (see [12])

� = exp
(
− iπ

h̄
(Ŝ1,y + Ŝ2,y + · · · + ŜN,y)

)
K, (21)

where Ŝj,y is the y component of the spin operator corresponding to the j th particle, j =
1, . . . , N , and K is the conjugation operator (same as in (7)).

2.2. Cartan involutions and decompositions of su(n)

We discuss next the Cartan decompositions for the Lie algebra su(n). What we say could be
generalized to general semi-simple Lie algebras. We refer to [13] for more details.

A Cartan decomposition of su(n) is a vector space decomposition

su(n) = K ⊕ P, (22)
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where the subspaces K and P satisfy the commutation relations

[K,K] ⊆ K, (23)

[K,P] ⊆ P, (24)

[P,P] ⊆ K. (25)

In particular, note that K is a subalgebra of su(n). A Cartan decomposition of su(n) induces
a factorization of the elements of the Lie groups SU(n). Let us denote by eL the connected
Lie group associated with a generic Lie algebra L. Then, given a Cartan decomposition (22),
every element X in SU(n) can be written as

X = KP, (26)

where K ∈ eK and P is the exponential of an element of P . Moreover if A is a maximal
Abelian subalgebra of su(n), with A ⊆ P , then one can prove that

∪K∈eK KAK∗ = P. (27)

This implies that one can write P in (26) as P = K1AK∗
1 with K1 ∈ eK and A ∈ eA. Therefore,

every element X in SU(n) can be written as

X = K1AK2, (28)

with K1,K2 ∈ eK and A ∈ eA. This is often referred to as KAK decomposition.
A Cartan involution of su(n) is a homomorphism θ : su(n) → su(n) such that θ2 is equal

to the identity on su(n). Associated with a Cartan decomposition (22) is a Cartan involution
which is equal to the identity on K and multiplies by −1 the elements of P , i.e.

θ(K) = K, ∀ K ∈ K, (29)

θ(P ) = −P, ∀ P ∈ P. (30)

Therefore, given a Cartan decomposition, relations (29) and (30) determine a Cartan involution
θ . Conversely, given a Cartan involution θ , the +1 and −1 eigenspaces of θ determine a Cartan
decomposition.

According to a theorem of Cartan [13], there exist only three types of Cartan
decompositions for su(n) up to conjugacy. More specifically, given a Cartan decomposition
(22) there exists a matrix H ∈ SU(n) such that K′ := HKH ∗,P ′ := HPH ∗, where K′ and
P ′ fall in one of the following cases labelled AI, AII and AIII3.
AI

K′ = so(n), P ′ = so(n)⊥, (31)

where so(n) is the Lie algebra of real skew-Hermitian matrices of dimension n and so(n)⊥ is the
vector space over the reals of purely imaginary skew-Hermitian matrices. The corresponding
Cartan involution, which we denote by θI , returns the complex conjugate of a matrix, i.e.

θI (A) := Ā. (32)

AII

K′ = sp

(
n

2

)
, P ′ = sp

(
n

2

)⊥
, (33)

3 In the following definitions and in the rest of the paper, the inner product 〈A, B〉 in su(n) is defined as
〈A, B〉 := Tr(AB∗) and it is proportional to the Killing form (see e.g. [13]).
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where we are assuming n even, and sp
(

n
2

)
is the Lie algebra of symplectic n × n matrices, i.e.

the Lie algebra of skew-Hermitian matrices A satisfying

AJ + JAT = 0. (34)

The matrix J is defined as

J :=
(

0 I n
2

−I n
2

0

)
. (35)

The corresponding Cartan involution θII is given by

θII(A) := J ĀJ−1 = −J ĀJ. (36)

AIII
In this case K′ is the set of all the skew-Hermitian matrices A of the form

A =
(

R 0
0 S

)
, (37)

where R ∈ u(p), S ∈ u(q), p, q > 0, p + q = n and Tr(R) + Tr(S) = 0. P ′ is equal to K′⊥.
The corresponding Cartan involution is given by

θIII(A) := Ip,qAIp,q, (38)

where the matrix Ip,q is defined as the block matrix Ip,q := (Ip×p 0

0 −Iq×q

)
.

Several authors have proposed Lie algebra decompositions for su(n) that, although special
cases of the general Cartan decomposition, are of particular significance in some contexts.
For example, Khaneja and Glaser [15] (see also [5] for the relation of this decomposition
with Cartan decomposition) have factorized unitary evolutions in SU(2N), namely unitary
evolution of N two level quantum systems (qubits), into local operations, i.e. operations on
only one-qubit and two-qubits operations. This result has consequences both in the study of
universality of quantum logic gates and in control theory. In the latter context, one would like
to decompose the task of steering the evolution operator to a prescribed target into a sequence
of steering problems to intermediate targets with a determined structure.

Another decomposition which is of particular interest to us is the concurrence canonical
decomposition of su(2N) which was studied in [6–8] in the context of entanglement and
entanglement dynamics. In this decomposition, K′ and P ′ are real span of tensor products,
multiplied by i, of N 2 × 2 matrices chosen in the set {I2×2, σx, σy, σz}, where σx,y,z are the
x, y, z Pauli matrices. In particular, K′ is spanned by tensor products with an odd number of
Pauli matrices and P ′ is spanned by tensor products with an even number of Pauli matrices.
It was shown in [6, 7] that for N even, this decomposition is a Cartan AI decomposition and
for N odd is a Cartan AII decomposition. One of the primary goals of the present paper is to
extend the CCD to the case of multipartite systems of arbitrary dimensions. The CCD was
also used in [2, 3] to characterize the input–output equivalent models of networks spin- 1

2 , in
a problem motivated by parameter identification for spin Hamiltonians. Generalizations of
these results for networks of spins of any value, in view of the results presented here, will be
given in a forthcoming paper [4].

3. Relation between Cartan decompositions and symmetries

The results of [6, 7] associate with the concurrence canonical decomposition a time reversal
symmetry. In particular, there is a relation between the involution θ corresponding to the CCD
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and the time reversal symmetry � in (21) (letting N be the number of spin assumed all equal
to 1

2 ). This relation is given by

θ(A) = �A�−1, ∀A ∈ su(2N), (39)

where the right-hand side needs to be interpreted as composition of operators. It is also easily
seen, using only the fact that the time reversal symmetry is antiunitary and the general formula
(7), that, if θ̄ is the time reversal symmetry on observables iA, we have

θ̄ (iA) := �iA�−1 = −i�A�−1 = −iθ(A). (40)

This rises the question of whether there is in general a one-to-one correspondence between
symmetries �, θ̄ (8), and Cartan involutions θ and therefore Cartan decompositions. Also,
the question arises on whether formula (see (40))

θ̄ (iA) = −iθ(A), ∀A ∈ u(n), (41)

is always valid. We shall investigate these issues in this section. We shall see that only
a particular class of symmetries, which we call Cartan symmetries, give rise to Cartan
involutions.

Definition 3.1. A symmetry � is called a Cartan symmetry if and only if �2 is equal to the
identity up to a phase factor.

Cartan symmetries have the property that applied two times to any state return the physical
state unchanged. For example, the time reversal symmetry and the parity (11) are Cartan
symmetries while the space translation symmetry (10) is not a Cartan symmetry.

Whether or not a symmetry is a Cartan symmetry can be verified once we have its
representation in a given basis, i.e. (cf (7))

�|α〉 = XK|α〉, (42)

where X is unitary and K is the identity if � is a unitary symmetry and is the conjugation of
all the components of |α〉 if � is antiunitary. � is a Cartan symmetry if and only if

XX̄ = eiφIn×n, (43)

for some φ ∈ R in the antiunitary case and X2 = eiφIn×n for some φ ∈ R in the unitary case.
This is clearly independent of the particular orthonormal basis chosen. If � is antiunitary
and T is a unitary transformation which transforms one orthonormal basis into another and
XK describes the action of the symmetry in one basis, then T XT̄ ∗K describes the action of
the symmetry in the new basis. It is easily seen that if X satisfies (43) so does T XT̄ ∗ and an
analogous fact holds for unitary symmetries.

Generalizing the approach in [6, 7], we now give the following definition.

Definition 3.2. The transformation induced by a symmetry � on su(n) is defined as

	�(A) := �A�−1. (44)

Note that this definition is analogous to the one of symmetries θ̄ on observables (8) which we
repeat here with different notations:

θ̄ (iA) := �iA�−1, ∀ A ∈ su(n). (45)

In order to give an expression of the induced transformation in a given basis, we consider
the antiunitary and the unitary cases separately. In the antiunitary case, if K is the conjugation
� = XK,�−1 = X̄∗K = KX∗, which gives

	�(A) = XĀX∗. (46)

Analogously, one obtains

	�(A) = XAX∗, (47)

in the unitary case.
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Theorem 1. The transformation 	� on su(n) induced by a symmetry (�, θ̄) is a Cartan
involution if and only if (�, θ̄) is a Cartan symmetry. Moreover, if (�, θ̄) is antiunitary, we
have ∀A ∈ su(n),

θ̄ (iA) := −i	�(A). (48)

Moreover, if (�, θ̄) is unitary, we have ∀A ∈ su(n),

θ̄ (iA) := i	�(A). (49)

Proof. It is easily verified that 	� defined in (46) or (47) is a homomorphism. Moreover,
assume that � is a Cartan symmetry. Then, we calculate (in the antiunitary case and
analogously in the unitary case)

	2
�(A) = X(X ¯̄AX∗)X∗ = XX̄AX̄∗X∗ = A, (50)

where in the last equality we have used the fact that � is a Cartan symmetry. Therefore, the
associated 	� is a Cartan involution.

Conversely consider a Cartan involution 	� on su(n), induced by a symmetry �. Then
we want to show that � is a Cartan symmetry.

Since 	� must be of the type AI, AII or AIII, we must be able to write it as θI , θII

and θIII in (32), (36) or (38) up to conjugacy. In particular, there exists a unitary T such that
(case AI)

	�(B) = T T̄ ∗B̄T̄ T ∗, ∀B ∈ su(n), (51)

or such that (case AII)

	�(B) = T J T̄ ∗B̄T̄ J−1T ∗, ∀B ∈ su(n), (52)

or such that (case AIII)

	�(B) = T Ip,qT
∗BT Ip,qT

∗, (53)

in the AIII case4. We take � in the cases AI, AII and AIII given by (cf (46) and (47))

� = T T̄ ∗K, (54)

� = T J T̄ ∗K (55)

and

� = T Ip,qT
∗, (56)

respectively. It is easily verified that these are all Cartan symmetries, i.e. XX̄ = I with
X = T T̄ ∗, X = T J T̄ ∗ and X2 = In×n with X = T Ip,qT

∗. Moreover the choice is unique,
up to a phase factor which does not change the property of the symmetry of being a Cartan
symmetry, as the set of matrices su(n) is an irreducible set of skew-Hermitian operators. This
concludes the proof of the theorem. �

Remark 3.3. The theorem could have been stated in a somewhat stronger form. In fact,
the proof shows not only that the symmetry corresponding to a Cartan involution is a Cartan
symmetry, but also that it exists and is unique up to a phase factor. Therefore, there is a one-
to-one correspondence given by (44), (45) between Cartan symmetries and Cartan involutions
and therefore decompositions.

Remark 3.4. It follows from the proof of the theorem that antiunitary Cartan symmetries
correspond to Cartan involutions of types AI and AII while unitary ones give rise to Cartan
involutions of type AIII.
4 In the case AI, in appropriate coordinates, the involution is equal to conjugation. If T is the matrix that makes
the change of coordinates, every B ∈ su(n) can be written as B = T AT ∗ for a unique A in su(n), and therefore
A = T ∗BT . Now (	�)I (B) = T ĀT ∗ and replacing A = T ∗BT , one obtains (51). The other cases are analogous.
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4. Dual structures of u(n) and iu(n); commutation and anticommutation relations

In this section, we study the dual structure of the Lie algebra u(n) of skew-Hermitian
matrices and the Jordan algebra iu(n) of Hermitian matrices equipped with the anticommutator
operation. We shall see that to a Cartan decomposition of u(n) there corresponds a
decomposition of iu(n) which we also call ‘Cartan’ where the role of the subspaces are possibly
reversed. This correspondence is crucial in the development of general decompositions for
multipartite systems developed in the following section. The situation is somehow different
if we consider decompositions of types AI and AII and if we consider decompositions of the
type AIII. Therefore, we shall consider the two cases separately. Only the case AI and AII
will in fact be used in the following section.

Consider a Cartan decomposition of su(n) (22)–(25) of the type AI or AII, its
corresponding Cartan involution θ and Cartan symmetry θ̄ related through (48). This
decomposition naturally extends to a decomposition of u(n) by replacing P with P ⊕
span{iIn×n}. We shall denote this subspace, with some abuse of notation, again by P , so
that

u(n) = K ⊕ P, (57)

P = K⊥, where the orthogonal complement is now taken in u(n), and the commutation
relations (23)–(25) also hold, within u(n). The Cartan involution θ of types AI and AII is
naturally extended to u(n) and span{iIn×n} will belong to the −1 eigenspace of θ so that
the new definition of P is consistent with the fact that P is the −1 eigenspace of θ . The
corresponding symmetry on iu(n) will be given by (48) or equivalently by (45).

Now consider iu(n)5 which has a structure of a Jordan algebra when equipped with the
anticommutator operation

{iA, iB} := (iA)(iB) + (iB)(iA). (58)

Associated with a Cartan decomposition of u(n) (57) is a decomposition of iu(n), which we
also call Cartan decomposition, given by

iu(n) = iK ⊕ iP. (59)

Moreover it follows from (45) that θ̄ is a homomorphism on the Jordan algebra iu(n). It is in
fact an involution as θ̄2 is equal to the identity map. It follows from (48) that iP and iK are,
respectively, the +1 and −1 eigenspaces of θ̄ and therefore we have

{iP, iP} ⊆ iP, {iP, iK} ⊆ iK, {iK, iK} ⊆ iP. (60)

So the roles of the subspaces K and P are somehow reversed when going from u(n) to iu(n).
In the case of a Cartan decomposition of the type AIII of su(n), the construction is

similar. In this case, we extend the Cartan decomposition to u(n) by incorporating span{iIn×n}
into K rather than into P . The commutation relations (23)–(25) are still valid with this
modified definition. The induced decomposition on iu(n) given in (59) is such that iK and
iP are, respectively, the +1 and −1 eigenspaces of the involution θ̄ . This follows from the
correspondence between θ (= 	�) and θ̄ which in this case is given by (49). We have

{iK, iK} ⊆ iK, {iP, iK} ⊆ iP, {iP, iP} ⊆ iK. (61)

Remark 4.1. (Decomposition of dynamics). It was pointed out in [7] that every evolution of
a finite dimensional quantum system U := eiH can be decomposed as

eiH = eiHa eiHs , (62)

5 From now on in this section all the matrices are assumed skew-Hermitian so that matrices multiplied by i are
Hermitian. An exception is in remark 4.1 below where H’s denote Hermitian operators.
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where the Hamiltonian Hs is symmetric with respect to time reversal symmetry and the
Hamiltonian Ha is antisymmetric (cf (12)–(14)) with respect to time symmetry, i.e. θ̄ (Hs) = Hs

and θ̄ (Ha) = −Ha . Therefore, every evolution can be decomposed into a time symmetric
one and a time antisymmetric one. In view of the above treatment, such a decomposition can
be extended to any Cartan symmetry. For Cartan symmetries of types AI and AII, iHa and
iHs are in the K and P subspace of the associated decomposition, respectively, so that the
decomposition (62) is a Cartan decomposition (26). To this purpose, also note that the K Lie
algebras in all the three types of Cartan decompositions correspond to semi-simple compact
Lie groups so that the exponential map is surjective [13]. The same argument can be repeated
for Cartan symmetries of the type AIII with the only change that this time iHs ∈ K and
iHa ∈ P .

5. Cartan decompositions for multipartite systems in arbitrary dimensions;
decompositions of the odd–even type

In this section we shall generalize the concurrence canonical decomposition to the general
case, i.e. to the case of a multipartite system consisting of any number of quantum systems of
any dimension. We shall call the general decomposition a decomposition of the even–odd type
because the two subspaces in the Cartan decomposition consist of elements which are tensor
products of an odd or even number of elements in appropriate subspaces. In doing this, we
shall make use of the correspondence between decompositions in u(n) and decompositions
in iu(n) described in the previous section. In particular, we shall consider decompositions
of u(n)-iu(n) associated with antiunitary Cartan symmetries. To this correspond Cartan
decompositions and involutions which have the property to extend to Cartan decompositions
and involutions for multipartite systems as we shall now describe.

Consider a multipartite quantum system composed of N quantum systems of dimensions
n1, n2, . . . , nN and with Hilbert spaces H1, . . . ,HN . The space of skew-Hermitian
(Hermitian) operators acting on the space Hj , j = 1, . . . , N , is u(nj ) (iu(nj )). The space
of skew-Hermitian (Hermitian) operators acting on the total Hilbert space HTOT := H1 ⊗
H2 ⊗ · · · ⊗ HN is u(n1n2 · · · nN) (iu(n1n2 · · · nN)). Consider now Cartan decompositions of
u(nj ), not necessarily all of the same type but all of the type AI or AII,

u(nj ) = Kj ⊕ Pj , (63)

and the corresponding decompositions for iu(nj )

iu(nj ) = iKj ⊕ iPj , (64)

satisfying, with obvious modification of the notations, the commutation relations (23)–(25)
and anticommutation relations (60). Let us denote by σj a generic element of an orthonormal
basis in iKj which is a Hermitian matrix. Also let us denote by Sj a generic element of
an orthonormal basis in iPj which is also a Hermitian matrix. An orthonormal basis in
iu(n1n2 · · · nN) is given by tensor products of the form

F := T1 ⊗ T2 ⊗ · · · ⊗ TN, (65)

where Tj = σj or Tj = Sj , with all the possible combinations of σ ’s and S’s in the N places.
We define Io (Ie) the subspace of iu(n1n2 · · · nN) spanned by tensor products which display
an odd (even) number of elements σ , so that we write

iu(n1n2 · · · nN) = Io ⊕ Ie. (66)
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We shall call this decomposition, along with the corresponding decomposition of
u(n1n2 · · · nN)

u(n1n2 · · · nN) = iIo ⊕ iIe, (67)

a decomposition of the odd–even type. We have the following result.

Theorem 2. The decomposition of the odd–even type (66), (67) is a Cartan decomposition
which is associated with a antiunitary Cartan symmetry, i.e.

[iIo, iIo] ⊆ iIo, [iIo, iIe] ⊆ iIe, [iIe, iIe] ⊆ iIo, (68)

{Io, Io} ⊆ Ie, {Io, Ie} ⊆ Io, {Ie, Ie} ⊆ Ie (69)

Proof. The proof is by induction on the number of systems N. For N = 1, Io = iK1 and
Ie = iP so that the commutation and anticommutation relations (68) and (69) are the same
as (23)–(25) and (60), respectively. Assuming now (68) and (69) true for every number of
subspaces strictly less than N, we can verify (68) for N by using the formula

[A ⊗ B,C ⊗ D] = 1
2 ([A,C] ⊗ {B,D} + {A,C} ⊗ [B,D]), (70)

and considering all the subcases. For example, to show the first one of (68) one considers the
four cases, by indicating with the superscript the number of factors in the tensor products:

C1:
{
A ∈ IN−1

o , B ∈ iI1
e , C ∈ IN−1

o ,D ∈ iI1
e

}
C2:

{
A ∈ IN−1

o , B ∈ iI1
e , C ∈ IN−1

e ,D ∈ iI1
o

}
C3:

{
A ∈ IN−1

e , B ∈ iI1
o , C ∈ IN−1

o ,D ∈ iI1
e

}
C4:

{
A ∈ IN−1

e , B ∈ iI1
o , C ∈ IN−1

e ,D ∈ iI1
o

}
.

Analogously, one can verify (69) by using induction along with the formula

{A ⊗ B,C ⊗ D} = 1
2 ([A,C] ⊗ [B,D] + {A,C} ⊗ {B,D}). (71)

�

Associated with a decomposition of the odd–even type is a Cartan involution
on u(n1n2 · · · nN), θTOT, and the corresponding Cartan symmetry on the space
iu(n1n2 · · · nN), θ̄TOT. If θ1, . . . , θN and θ̄1, . . . , θ̄N are the Cartan involutions and symmetries
associated with the 1, 2, . . . , N th decomposition, θTOT and θ̄TOT can be described as follows.

Let A be an element of the orthonormal basis of iIo, i.e. it can be written as

A = T1 ⊗ · · · ⊗ (iTk) ⊗ · · · ⊗ TN, (72)

where Tj = σj or Tj = Sj , with an odd number of σ ’s. Then,

θTOT(A) = θ̄1(T1) ⊗ · · · ⊗ θk(iTk) ⊗ · · · ⊗ θ̄N (TN) = ±A, (73)

since θ̄j (σj ) = −σj , θ̄j (Sj ) = Sj , θk(iσk) = iσk and θk(iSk) = −iSk .
In general an element of the orthonormal basis in u(n1n2 · · · nN) is a tensor product of

σ and S elements, with i multiplying one of the elements. θTOT is obtained by applying θ̄ j

in all the positions j without i and θk in the kth position where there is the factor i. If in the
kth position there is a factor of the type σ this gives a +1iσ factor when transformed. In the
remaining terms, all the factors S are transformed into S while factors σ give other factors of
the type σ and a collective factor (−1)p−1. Here p is the total number of σ ’s and this is 1 if p
is odd and −1 if p is even, so that θTOT(A) = A in one case and θTOT(A) = −A in the other
case.
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Analogously, one can treat the case where in the kth position there is a factor of the type iS.
With a similar argument, one shows that θ̄TOT can be defined on tensor products by applying
θ̄ j in every j th position, which clearly gives a factor (−1)p where p is the number of factors σ .
This shows that θTOT and θ̄TOT are the involution and symmetry associated with the odd–even
Cartan decomposition.

An alternative treatment could have been to first define the involutions and symmetries
and then to obtain the decomposition (66)–(69) in terms of eiegenspaces of these
homomorphisms.

Remark 5.1. The concurrence canonical decomposition is obtained as a special case of
the odd–even decomposition when the N systems are all two level systems and the Cartan
decomposition chosen on each of them is of the type AII. This gives K = su(2) = sp(1)

and P = {0} in the decomposition of su(2) (22). It corresponds to a time reversal symmetry
((21) with N = 1 and spin- 1

2 ) which is indeed a Cartan symmetry. Note that n = 2 is the
only case where in the Cartan decompositions AI, AII and AIII, we can take K equal to the
whole Lie algebra su(n). This fact makes it difficult, in higher dimensions, to obtain natural
decompositions of dynamics into local and entangling parts as it was done for the two-qubits
case, for example, in [20].

6. The nature of the odd–even decomposition

It follows (for instance) from formulae (68), (69) that the odd–even decomposition is a
decomposition of the type AI or AII, namely a decomposition corresponding to a Cartan
symmetry. It is interesting to know how the choice of the single decompositions on the various
subsystems determines whether the odd–even decomposition is of the type AI or AII. One
reason for that is that one may want to further decompose the Lie algebra iIo and therefore
would like to know its nature. For example, it was shown in [7] that the concurrence canonical
decomposition is AI in the case of even number of qubit subsystems and AII in the case
of odd qubits. In our notation, iIo is (conjugate to) so(2N) for N even and sp(2N−1) for
N odd.

In general, this information can be obtained by a simple count of the dimensions. Recall
that in a AI decomposition of u(n) the dimension of the Lie algebra K in (57) is the dimension
of so(n), i.e. dI := n(n−1)

2 while in a AII decomposition of u(n) the dimension of the Lie
algebra K is the dimension of sp

(
n
2

)
, i.e. dII := n(n+1)

2 . These numbers are never the same and
therefore they uniquely identify the type of decomposition obtained. We have the following
result.

Theorem 3. Consider an odd–even decomposition on N subsystem obtained by performing
AII decompositions on r subsystems and AI decompositions on N − r subsystems. Then, the
resulting decomposition is of type AII if r is odd and of type AI if r is even.

Proof. The proof is by induction on N. If N is equal to 1, the result is obvious. Consider
now N subsystems and consider first the case r odd. Assume, without loss of generality,
that an AII decomposition is performed on the Nth subsystem. Let n1 (n2) denote the
dimension of the vector composed of the first N − 1 systems (of the Nth subsystem). By
the inductive assumption, the odd–even decomposition on the first N − 1 system is of the AI
type. Therefore there are n1(n1−1)

2 elements of the odd type, i.e. tensor products containing an
odd number of σ matrices spanning the associated subalgebra K. A remaining orthonormal
set of n2

1 − n1(n1−1)

2 = n1(n1+1)

2 even-type elements span the orthogonal complement in u(n1).
The basis for the Lie algebra K for the system composed of all the N subsystems is obtained
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by tensor products of the n1(n1−1)

2 odd elements with the n2
2 − n2(n2+1)

2 = n2(n2−1)

2 even-type
elements on the Nth subsystem or by products of the n1(n1+1)

2 even elements with the n2(n2+1)

2
odd-type elements on the Nth subsystem. The dimension of the K Lie algebra in the resulting
odd–even decomposition is therefore

n1(n1 − 1)

2
× n2(n2 − 1)

2
+

n1(n1 + 1)

2
× n2(n2 + 1)

2
= n1n2(n1n2 + 1)

2
, (74)

which indicates a decomposition of the type AII for the total system which has dimension
n1n2. An analogous reasoning proves the case where r is even. �

The result of [6] is obtained as a special case of the above theorem as in the case treated
all the decompositions applied are of type AII, and therefore the concurrence canonical
decomposition is of type AI on an even number of subsystems and of type AII on an odd
number.

7. Conclusions

We have described the relation between quantum symmetries and Cartan decompositions of
the Lie algebra su(n). The analysis is based on a duality between Cartan decompositions
of the Lie algebra u(n) and the Jordan algebra iu(n) of n × n Hermitian matrices equipped
with the anticommutator operation. This has led to results on the decomposition of the
dynamics of quantum systems (see remark 4.1) and to a method to decompose the evolution
of multipartite quantum systems starting from decompositions of the dynamics of the single
subsystems.

To give a concrete example of how the decomposition given in the paper can be used for
control, consider the problem of controlling the system of a spin-1 particle coupled with a
spin- 1

2 particle. This is a six-dimensional quantum system and it is not covered by the cases
treated in the literature which usually consider coupling of spin- 1

2 particles. The evolution of
this system is governed by an equation of the type

Ẋ = HIX + U(t)X, X(0) = I6×6. (75)

HI is a 6×6 skew-Hermitian matrix which models the interaction between the particles, while
U(t) is a 6 × 6 skew-Hermitian matrix, function of time, which represents the control. It is
typically the case that we can assume U(t) arbitrarily large and varying in the Lie algebra
I1 := (u(3) ⊗ 1) ⊕ (1 ⊗ u(2)). This physically corresponds to the fact that we have complete
local control on the two spins. The interaction HI is not in the Lie algebra I1. It may have
different forms according to the specific model considered. A particular form of the interaction
is Ising interaction, where HI is given by

HI :=

1 0 0

0 0 0
0 0 −1


 ⊗

(
i 0
0 −i

)
. (76)

According to the odd–even decomposition described here6, HI belongs to Ie while U(t) may
achieve values in both Ie and the Lie algebra Io. If the control problem is to steer the state

6 We use a decomposition of the type AI on the three-dimensional system and of type AII on the two-dimensional
one.
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X in (75) from the identity I6×6 to a given target Xf ∈ U(6), the odd–even decomposition of
Xf gives a method to control. For example, consider the final target

Xf =




i√
2

0 0 0 −i√
2

0

0 −i√
2

0 0 0 i√
2

0 0 1 0 0 0
0 0 0 1 0 0
−i√

2
0 0 0 −i√

2
0

0 −i√
2

0 0 0 i√
2




. (77)

According to the odd–even Lie group decomposition, Xf has the form

Xf = eA π
4 eHI

π
2 , (78)

where A is in the Lie algebra Io and it is given by

A =

 0 0 1

0 0 0
−1 0 0


 ⊗ I2×2, (79)

while HI ∈ Ie is the Ising interaction in (76). From the decomposition (78), a strategy follows
for the control of the system (75) to Xf . We can set U ≡ 0 for time π

2 and then achieve
the transformation eA π

4 with a large control U in a very short time. Therefore, the Lie group
decomposition (78) gives a strategy to solve the control problem in this case.

The algorithmic aspects of the decomposition, i.e. the linear algebraic methods to obtain
the factors, are not treated in this paper. These rely on numerical linear algebra results for
Cartan decompositions and will be the object of further study.
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